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ABSTRACT

Large Language Models (LLMs), built on Transformer architectures, exhibit re-
markable generalization across a wide range of tasks. However, fine-tuning these
models for specific tasks remains resource-intensive due to their extensive param-
eterization. In this paper, we investigate two remarkable phenomena related to
the attention mechanism during the fine-tuning of LLMs. The first phenomenon,
termed “Unequal Importance of Attention Matrices,” highlights the impact of fine-
tuning different weight matrices. It shows that optimizing the Wv matrix yields
significantly better performance than optimizing the Wk matrix. Fine-tuning only
the Wq and Wv matrices is computationally efficient while delivering results
comparable to, or even better than fine-tuning all three matrices (Wq , Wk, and
Wv). The second phenomenon, “Attention Matrices with Customized Learning
Rate Leads to Better Convergence,” emphasizes the importance of assigning dis-
tinct learning rates to these matrices. Specifically, a higher learning rate for the
Wv matrix compared to Wq and Wk accelerates convergence and improves per-
formance. Building on these insights, we propose a new strategy that improves
fine-tuning efficiency in terms of both storage and time. Experimental results on
benchmark datasets validate the effectiveness of this approach, supporting our the-
oretical findings. Our analysis lays the theoretical groundwork for configuring and
improving lightweight algorithms in LLMs fine-tuning.

1 INTRODUCTION

Large Language Models (LLMs) are often built on Transformer architectures [43] and possess a
large number of parameters, enabling them to generalize across a broad range of general tasks [43,
27, 42, 8, 31]. However, achieving optimal performance on specific tasks typically necessitates
fine-tuning these pre-trained models. Despite the formidable capabilities of LLMs, the fine-tuning
process is resource-intensive, requiring significant computational power, storage, and time due to
the large scale of model parameters involved. Fine-tuning all the parameters of a large language
model, known as full fine-tuning, is highly computationally expensive. To reduce the computational
cost, various parameter-efficient fine-tuning (PEFT) methods have been proposed [7, 19, 23, 24, 20],
which only fine-tune a small number of (extra) model parameters.

A fundamental component of transformers is the attention mechanism, particularly the interactions
among the query matrix Wq , the key matrix Wk, and the value matrix Wv . During the fine-tuning
of LLMs involving the attention mechanism, two interesting phenomena have been observed: (1)
Unequal Importance of Attention Matrices—optimizing the Wv matrix is pivotal for enhancing per-
formance, significantly more so than adjustments to the Wk matrix, which exhibit limited impact
on the outcomes. Additionally, fine-tuning only the Wq and Wv matrices often yields results that
are comparable to or surpass those achieved by fine-tuning all three matrices Wq , Wk, and Wv ,
which also reduces the number of tunable parameters by approximately 1/3, offering computational
benefits (Section 3). (2) Attention Matrices with Customized Learning Rate Leads to Better Conver-
gence—using the same learning rate for Wq&Wk and Wv is not optimal for efficient convergence.
In fact, it is essential to apply distinct learning rates for the Wq , Wk, and Wv components to ensure
optimal fine-tuning performance. Specifically, the learning rate for Wv should generally be higher
than that for Wq and Wk to facilitate efficient convergence (Section 4).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

While certain empirical guidelines, such as the original Low-Rank Adaptation (LoRA) [20], explore
which weight matrices in transformers are suitable for the application of LoRA, comprehensive the-
oretical analyses of these phenomena are still limited. This includes aspects such as selecting appro-
priate weight types for fine-tuning and optimizing learning rate settings. Reflecting on the attention
equation itself (Section 2): (1) In linear algebra, two matrices multiplied without an intermediate
activation can be equivalent to a single matrix. Some studies [33, 40, 4] often treat Wq and Wk as
a single unit (Wqk = WqW

T
k ), however, the benefits of fine-tuning Wq&Wv alone have yet to be

further clarified. (2) Cosidering the scenario where the values of Wq , Wk, and Wv approach zero,
the gradients of Wq&Wk tend to diminish towards zero. In contrast, the gradient of Wv remains
non-zero due to the influence of softmax normalization. Driven by the above motivations, this paper
delves into the issue from the following two perspectives.

• Generalization: advantages of fine-tuning Wq&Wv over Wq,Wk,Wv together. We
perform a thorough theoretical analysis to demonstrate the advantages. To be more specific,
we employ information-theoretic approaches [46, 34, 45, 53] to establish the generalization
bounds of fine-tuning pre-trained models with attention mechanism (See Theorem 1 for
details). This indicates that fine-tuning Wq&Wv instead of Wq,Wk,Wv reduces the
number of parameters, while improving generalization bounds and potentially providing
memory benefits.

• Optimization: convergence analysis of attention mechanism with varying learning
rate settings. To further investigate the aforementioned phenomena, we examine the op-
timization process of the attention mechanism. First, we discuss the learning dynamics in
transformers in Case 1, suggest that Wv may experience instances of inefficient learning
during fine-tuning process for downstream tasks. This naturally leads to the hypothesis
that accelerating the learning of Wv in the early stages could potentially induce Wk and
Wq to begin learning earlier. Additionally, by using scaling arguments for large width-n
networks [49, 13], we illustrate (Theorem 2) that the feature learning of attention mecha-
nism is efficient when the learning rate for Wv should be generally much larger than that
of Wq&Wk in fine-tuning.

Building on our experimental and theoretical insights, one can develop new algorithms to improve
the effectiveness (e.g., storage, and time) of fine-tuning. Experimental results for our strategy (in
Section 5) on benchmark datasets [44] and open source pre-trained models [29, 2] verify that the
method can visibly influence fine-tuning efficiency1. We do not make direct comparisons with var-
ious parameter-efficient fine-tuning methods, as our strategy is primarily intended to demonstrate
how theoretical analysis can effectively guide experimental procedures.

2 PRELIMINARIES AND BACKGROUND

In this section, we first describe the core components of our study by reviewing some basic notations.
The transformer model [43] serves as the backbone of most state-of-the-art pre-trained models. For
clarity, we briefly outline its key equations, focusing on the self-attention function, as follows.

Self-attention. Given a sequence of m vectors C ∈ Rm×din over which we would like to perform
attention and a query vector x ∈ Rdin , that is, the input is [C,x] ∈ R(m+1)×din . The conventional
attention function can be expressed as2:

Attn(xWq,CWk,CWv) = softmax
(
xWqW

T
k C

T

√
dout

)
CWv, (1)

where Wq ,Wk,Wv ∈ Rdin×dout are query, key and value (projection) matrices.

A unified framework for parameter-efficient fine-tuning. Building on the work of [16], we con-
sider a unified framework that establishes connections among various parameter-efficient fine-tuning
methods. Specifically, we reinterpret these methods as modifications applied to specific hidden states

1Code is anonymized at https://anonymous.4open.science/r/LightweightAtt-6899/
2For simplicity, we focus on the last vector of input in a single-head self-attention. Our analysis is readily

generalizable to multi-head self-attention.
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within pre-trained models, the composition function:

h← l1h+ l2∆h, (2)

where l1, l2 are coefficients, h is denoted as the hidden representation to be directly modified and
∆h is a modification vector. Additionally, h and x can represent the attention output and input
respectively. Here, we will present two special cases:

• LoRA. LoRA [20] injects trainable low-rank matrices into transformer layers to approx-
imate the weight updates. Instead of directly adjusting the full weight matrix W ∈
Rdin×dout , LoRA represents its update with a low-rank decomposition W + ∆W =
W + AB, where A ∈ Rdin×r,B ∈ Rr×dout are tunable parameters. For a specific
input x, LoRA modifies the projection output h as (where s ≥ 1 is a tunable scalar hyper-
parameter):

h← h+ s∆h, ∆h := xAB. (3)

• Prefix tuning. Prefix tuning [24] prepends r tunable prefix vectors to the keys and values
of the attention mechanism at every layer. Specifically, two sets of prefix vectors Pk,Pv ∈
Rr×dout are concatenated with the original key CWk and value CWv , attention is then
applied to the prefixed keys and values as3:

h← (1− λ(x)h+ λ(x)∆h, ∆h := softmax(xWqP
T
k )Pv ≜ softmax(xA)B, (4)

where λ(x) =
∑

i exp(xWqP
T
k )i∑

i exp(xWqPT
k )i+

∑
j exp(xWqWT

k CT )j
is a scalar that represents the sum of

normalized attention weights on the prefixes. We derive a detailed equivalent form of Prefix
tuning to establish its connection with LoRA in Appendix B.1.

Remark 1. By defining A = WqP
T
k ,B = Pv in Eq.(4), we can establish a connection with

LoRA in Eq.(3). Notably, if we replace the softmax attention with linear attention here, the two
are equivalent to some extent. Intuitively, in the attention mechanism, A (WqP

T
k ) is responsible

for generating attention scores, while B (Pv) utilizes these attention scores to produce the target
content. Therefore, during fine-tuning, query, key, and value are likely to exhibit varying degrees of
importance. This may also provide theoretical insights for recent works [53, 12], which empirically
observed an asymmetry where the project-down matrix A is responsible for extracting features from
the input, while the project-up matrix B utilizes these features to generate the desired output in
LoRA fine-tuning.

Θ Notation. For the convergence analysis, we adopt the following notation to describe the asymp-
totic behavior as the width n increases, similar to those in [49, 13]. Given sequences cn ∈ R and
dn ∈ R+, we write cn = O(dn) and cn = Ω(dn) to mean cn < κdn or cn > κdn, respectively,
for some constant κ > 0. We denote cn = Θ(dn) when both cn = O(dn) and cn = Ω(dn) hold,
implying that cn and dn grow at comparable rates. For vector sequences cn = (cin)1≤i≤k ∈ Rk

(for some k > 0), we write cn = O(dn) when cin = O(din) for all i ∈ [k], and analogous notation
applies for other asymptotic bounds. Finally, when the sequence cn is a vector of random variables,
convergence is understood to refer to convergence in the second moment (i.e., L2 norm).

3 ADVANTAGES AND GENERALIZATION ANALYSIS

This section, we show our first interesting observation (Unequal Importance of Attention Matrices)
in fine-tuning the attention mechanism and the storage benefit of fine-tuning only Wq and Wv in
Section 3.1. Afterwards, we give a mutual information based generalization bounds of fine-tuning
only Wq and Wv in Section 3.2, which provide a better generalization error.

3.1 EMPIRICAL ADVANTAGES OF FINE-TUNING ONLY QUERY,VALUE MATRICES

To explore the Unequal Importance of Attention Matrices, we focus our study on adapting only
the attention weights for downstream tasks, while freezing the other modules to ensure simplicity

3Without loss of generalization, we ignore the softmax scaling factor for ease of notation.
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and parameter efficiency. Furthermore, we investigate the impact of adapting different types of
attention weight matrices in a Transformer, as outlined below. We present our empirical results
using LoRA to fine-tune a set of language models (Roberta-base [29] and Llama3.1-8b [2]) across
various benchmarks [44]. Further details on the experimental setup and additional empirical results
can be found in Appendix C.1.

Table 1 provides a detailed comparison of the impact of fine-tuning different weight matrices
(Wq,Wk,Wv) across various rank values r and weight update strategies in LoRA fine-tuning on
tasks like SST2, QNLI, QQP, and MNLI. As seen in the table, we can see a clear trend where solely
updating the Wv matrix outperforms just learning the Wq,Wk matrix. Interestingly, the combina-
tion of fine-tuning both Wq and Wv often leads to performance that matches or even exceeds that
achieved by fine-tuning all three matrices Wq,Wk, and Wv . This pattern is consistently observed
across various tasks and rank values, further emphasizing the importance of these two matrices over
Wk during fine-tuning.

Computational benefits. Here, we show that the reduced amount of adapted parameters by
(roughly) 1/3 provides computational gains. The key benefit of parameter-efficient method is to
save memory during training, storage and communication [26]. Fine-tuning Wq&Wv alone as op-
posed to both Wq&Wv and Wk reduces the number of parameters by 1/3, when the dimensions
of Wq , Wk, and Wv are the same.

Table 1: Performance comparison across different r values and weight types. To enable a fair
comparison, we initialize the weights for all tasks with the original pretrained weights. Test accuracy
of Roberta-base (R) and Llama3.1-8b (L) fine-tuning on SST2, QNLI, QQP, MNLI, with sequence
length T = 128 and half precision (FP16). All values are averaged over 3 random seeds. The best
result is shown in bold, the second best result is shown in underline, and the third best result is
shown with double underlines.

Weight Type Wq Wk Wv Wq,Wk Wq,Wv Wq,Wk,Wv

SST2(R)
r = 4 0.904 0.902 0.913 0.919 0.920 0.920
r = 8 0.914 0.906 0.918 0.915 0.919 0.922
r = 16 0.907 0.905 0.916 0.917 0.921 0.923

QNLI(R)
r = 4 0.854 0.835 0.878 0.866 0.888 0.887
r = 8 0.857 0.841 0.875 0.866 0.889 0.895
r = 16 0.854 0.840 0.875 0.867 0.890 0.890

QQP(R)
r = 4 0.812 0.804 0.828 0.823 0.838 0.843
r = 8 0.812 0.806 0.828 0.823 0.840 0.844
r = 16 0.812 0.804 0.831 0.823 0.839 0.844

QQP(L) r = 8 0.864 0.845 0.865 0.866 0.874 0.874
r = 16 0.864 0.845 0.869 0.867 0.874 0.874

MNLI(R)
r = 4 0.748 0.733 0.807 0.772 0.820 0.828
r = 8 0.749 0.733 0.809 0.778 0.820 0.827
r = 16 0.750 0.734 0.810 0.780 0.824 0.828

MNLI(L) r = 8 0.802 0.660 0.862 0.814 0.871 0.871
r = 16 0.803 0.663 0.863 0.815 0.871 0.871

Why fine-tune Wq&Wv instead of Wk&Wv . In Eq.(1), the conventional attention function in-
cludes a term xWqW

T
k . (1) In linear algebra, two matrices multiplied without an intermediate

activation can be equivalent to a single matrix. Therefore, the effects of fine-tuning Wq&Wv and
Wk&Wv are theoretically expected to yield similar outcomes (See the supplementary experimen-
tal results provided in Appendix x). (2) Wk operates only on the transformed representation matrix
xWq produced by the preceding transformation. Consequently, it loses direct access to the original
representation information. This observation is consistent with the findings in [35]: the information

4
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representation in LoRA also exhibits significant limitations, as in ∆h = xAB, where B similarly
lacks access to the original representation information.

3.2 INFORMATION-THEORETIC GENERALIZATION BOUNDS

In the previous part, we establish that the Unequal Importance of Attention Matrices among Wq ,
Wk, and Wv during fine-tuning. Some studies [33, 40, 4] often treat Wq and Wk as a single unit
(Wqk = WqW

T
k ), however, the benefits of fine-tuning Wq&Wv alone, rather than fine-tuning

Wq&Wv , and Wk together, have yet to be further clarified. Therefore, we will further analyze this
issue from an information-theoretic generalization perspective.

Recently, information-theoretic generalization bounds [46, 37, 39, 45] have been introduced to ana-
lyze the expected generalization error of learning algorithms. A key benefit of these bounds is that
they depend not only on the data distribution but also on the specific algorithm, making them an
ideal tool for studying the generalization behavior of models trained using particular algorithms.

Generalization error. We let Z = X × Y be the instance space and µ be an unknown distribution
on Z , specifying random variable Z. Here, X denotes the feature space and Y is the label space.
Suppose one observes a training set SN ≜ (Z1, ..., ZN ) ∈ ZN , with N i.i.d. training examples
drawn from µ. In the information-theoretic analysis framework, we letW be the space of hypotheses
related to the model, and a stochastic learning algorithm A which takes the training examples SN

as its input and outputs a hypothesis W ∈ W according to some conditional distribution QW |SN
.

Given a loss function ℓ : W ×Z → R+, where ℓ(w,Z) measures the “unfitness” or “error” of any
Z ∈ Z with respect to a hypothesis w ∈ W . We take ℓ as a continuous function and assume that ℓ
is differentiable almost everywhere with respect to w. The goal of learning is to find a hypothesis w
that minimizes the population risk, and for any w ∈ W , the population risk is defined as Lµ(w) ≜
EZ∼µ[ℓ(w,Z)]. However, since only can partially observe µ via the sample SN , we instead turn to
use the empirical risk, defined as LSN

(w) ≜ 1
N

∑N
i=1 ℓ(w,Zi). Then the expected generalization

error of A is defined as
ẽrror(A) ≜ EW,SN

[Lµ(W )− LSN
(W )],

where the expectation is taken over (SN ,W ) ∼ µN ⊗QW |SN
.

Consider the following variations of fine-tuning algorithms: tuning both Wk and Wq&Wv matrices
(as in classic attention mechanism in fine-tuning), tuning only Wq&Wv:

Definition 1 (Fine-tuning algorithms). Recalling A unified framework for parameter-efficient fine-
tuning, we can model the fine-tuning process of the attention mechanism as h+∆h = xW+x∆W.
Let W = {Wi}Li=1 be a set of abstract parameter matrices related to a pretrained model, where
each Wi is associated with the parameters Wi

q,W
i
k,W

i
v . The indices 1, ..., L represent the layers

of the model where these parameters are to be fine-tuned. Let I ⊆ {1, ..., L} denote the subset of
layers selected for fine-tuning. Given a fine-tuning training set SN , let r denote the chosen lora-
rank, and assume each tuned parameter is quantized to q bits. Define the following algorithmic
frameworks for selecting an adaptation ∆W = {∆Wi}Li=1 (with other details left open to choice).
(1) AQKV : For each i ∈ I, optimize {Wi

q,W
i
k,W

i
v}i∈I to fit the data SN .

(2) AQV : For each i ∈ I, optimize {Wi
q,W

i
v}i∈I to fit the data SN .

Then we have the following theorem to bound the generalization error using the information-
theoretic generalization framework.

Theorem 1 (Generalization bounds on adapting Wq&Wv and/or Wk). Consider the algorithms of
Definition 1. Assume the loss ℓ(W, Z) is R-subGaussian under (∆W, Z) ∼ P∆W|W × µ. Then,

ẽrror(AQV ) ≤
√

4R2

N
qr

∑
i∈I

(din + dout),

ẽrror(AQKV ) ≤
√

6R2

N
qr

∑
i∈I

(din + dout),

where Wi
q,W

i
k,W

i
v ∈ Rdin×dout . See Appendix B.2 for a proof.
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Remark 2 (Discussion of the advantages). We can evaluate the empirical risk (LSN
) by observing

the model’s performance on the dataset we have. If the generalization error (Theorem 1) is de-
termined, it is at least possible to estimate the population risk (Lµ). This generalization bound
increases with the number of parameters being tuned, which grows as a function of r and the
dimensions of the parameter matrices. In Table 1, we know that with the same r value, fine-
tuning Wq&Wv consistently achieves results comparable to or even surpassing those of fine-tuning
Wq,Wk,Wv . This reduces the number of parameters for the same r, while improving generaliza-
tion bounds and potentially providing memory benefits.

4 CONVERGENCE ANALYSIS IN OPTIMIZATION

In Section 3, we have already demonstrated the generalization performance of the attention mecha-
nism during fine-tuning. Our focus will now shift toward optimizing convergence efficiency. Some
optimization observations have also been reported in previous works [20, 25, 15], such as: Li et al.
[25] provide theoretical analyses of learning dynamics in transformers and observes a roughly two-
stage process of self-attention. Meanwhile, He et al. [15] empirically show that the attention mech-
anism, particularly the value vector, stores the largest amount of memories and has the greatest
influence during fine-tuning. However, there is not yet a satisfactory explanation for why this phe-
nomenon occurs or how it can be effectively leveraged. In this section, we will explore these ques-
tions in more depth.

4.1 AN INSIGHT INTO INEFFICIENT LEARNING FOR VALUE MATRIX

We first discuss the optimization process of attention mechanism in the following simple case.
Case 1. Omitting the scale factor for qualitative analysis in Eq.(1), we obtain:

Attn(xWq,CWk,CWv) = softmax
(
xWqW

T
k C

T
)
CWv.

Intuitively, if Wq,Wk,Wv are initialized as random matrices close to zero and trained simultane-
ously, then in the initial step, ∇Wk

L(∇Wq
L) contains the term Wq(Wk), which is close to 0. By

contrast, ∇Wv
L contains the softmax-normalized attention weights. Therefore, during the initial

steps (in training), Wv intuitively grows at a much faster rate than Wk(Wq).

The work of [25] empirically exhibits Case 1 with an approximately two-stage phenomenon: (1) In
stage 1 (initial steps), the norms of Wk and Wq remain close to zero across all layers, while the
norm of Wv increases significantly, accompanied by rapid changes in its orientation. (2) In stage
2, the norms of Wk and Wq begin to grow significantly, though much later than the Wv matrices.
Briefly, in this case, Wv reaches a certain level of learning during training before Wk and Wq

begin to learn. This suggests that when fine-tuning the model for downstream tasks, there may also
be instances of inefficient learning in Wv . Additionally, is there a fine-tuning strategy that could
facilitate more effective learning for downstream tasks? For instance, accelerating the learning of
Wv in the early stages could potentially induce earlier learning in Wk and Wq .

Next, we present the second interesting phenomenon Attention Matrices with Customized Learning
Rate Leads to Better Convergence. We use the General Language Understanding Evaluation (GLUE,
[44]) to evaluate the fine-tuning performance of different fine-tuning strategies, which consists of
several language tasks that evaluate the understanding capabilities of language models. Using LoRA,
we fine-tune Roberta-base from the RoBERTa family [29] and Llama3.1-8b [2] on MNLI, QQP,
QNLI, and SST2 tasks with varying learning rates (ηQK , ηV ) to identify the optimal combination.
Other empirical details are provided in Appendix C.1 and we evaluate the LLaMA3.1-8B model
on more complex benchmarks in Appendix C.2.5. We present our empirical results using LoRA to
fine-tune language models, as visualized in the heatmaps (Figure 1 and Figure 2).

In Figure 1 and Figure 2, we observe that (1) test accuracy consistently reaches its maximum for
certain sets of learning rates where ηQK < ηV , outperforming the standard practice of setting ηQK

and ηV equal. (2) More interestingly, the gap between the optimal choice of learning rates overall
and the optimal choice when ηQK = ηV varies across different tasks. This is probably due to the
fact that harder task (like MNLI) requires more efficient feature learning. Additionally, we compare
two optimal learning rate (ηQK , ηV ) settings in Figure 2 (Left), the ηV >> ηQK setting has a better
convergence than ηV = ηQK setting in Figure 2 (Right).
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Figure 1: The test accuracy of RoBERTa-base fine-tuning was evaluated over 3 epochs for MNLI,
QQP, and QNLI, and 6 epochs for SST-2, with a sequence length T = 128 and using half-precision
(FP16). The LoRA hyperparameters were set to α = r = 8. All reported values represent the
average results across 3 random seeds. We highlight (1) the best overall accuracy and (2) the values
where ηV /ηQK = 1. These values are shown in red. For better visualization, when accuracy is
lower than a fixed threshold, we set it to threshold.
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Figure 2: Left: The test accuracy of Llama3.1-8b fine-tuning was evaluated over 800 steps for
MNLI. Key values like Figure 1 are also shown in red. Right: The training loss over 800 steps
for MNLI fine-tuning on Llama3.1-8b, showing comparison between two optimal learning rate
(ηQK , ηV ) settings in Left: (1) with ηV = ηQK (2) with ηV >> ηQK .

It is also important to note that due to limited computational resources in our experiments, we use
a sequence length of T = 128 and fine-tune for only 3 epochs on MNLI and QQP. Therefore, it
is expected that our test accuracies may be lower than those reported by Hu et al. [20], where the
authors fine-tune RoBERTa-base with a sequence length of T = 512 (for MNLI) and for more
epochs (30 for MNLI). We do not include confidence intervals for clearer visualization, however,
the fluctuations remain within acceptable limits. See Figure 2 (Right) for instance. In Appendix C.2,
we provide additional results including the training loss.

4.2 CONVERGENCE ANALYSIS FOR LEARNING RATE

It naturally raises the question of why ηQK and ηV should be set differently. In practice, most state-
of-the-art models have a large width (embedding dimension), making it worthwhile to examine the
training dynamics as the width approaches infinity.

Starting with a Toy setting. Revisiting Definition 1, we have ∆h = softmax(xA)B. In the case
of a linear attention mechanism, we instead have ∆h = xAB. Then consider the following toy
setting

f(x) = x(W ∗ + aT b),

where W ∗ ∈ Rn×1 are the fixed4 pre-trained weights, b ∈ R, a ∈ R1×n are adaptation weights,
x ∈ Rn is the model input (This corresponds to r = 1 in Definition 1). The training goal is to

4Here, we primarily focus on the case of ∆W to provide insightful theoretical results.
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minimize the loss L(θ) = 1
2 (f(x) − y)2 where θ = (a, b) and (x, y) is an input-output datapoint5.

Similar to LoRA, we generally aim to initialize the product aT b to zero, ensuring that fine-tuning
starts from the pre-trained model. This requires at least one of the weights, a (related toWq&Wk)
or b (related toWv), to be initialized to zero. If both are initialized to zero, Wq&Wk learning
cannot occur efficiently in init steps, as discussed in Section 4.1 (More detailed initialization settings
are shown in Appendix B.3).

And we assume that x = Θ(1), meaning that the input coordinates remain of the same order as the
width increases. In the subsequent analysis, we examine how the fine-tuning dynamics evolve as the
model width n increases.

To streamline the analysis, we assume W ∗ = 0, a common simplification that can be applied without
loss of generality. This assumption is implemented by setting ŷ = y − xW ∗. We denote the fine-
tuning step by using subscript t. Let Ut = ft(x)− y, the gradients are then computed as:

∂L
∂at

= xUtbt,
∂L
∂bt

= xaTt Ut.

And at step t with learning rate ηa, ηb > 0, we have

∆ft ≜ ft(x)− ft−1(x)

= − ηa||x||2Ut−1b
2
t−1︸ ︷︷ ︸

δ1t

− ηb(xa
T
t−1)

2Ut−1︸ ︷︷ ︸
δ2t

+ ηaηb||x||2(xaTt−1)U
2
t−1bt−1︸ ︷︷ ︸

δ3t

.

Remark 3. The output update is influenced by three key terms. The first two items δ1t , δ
2
t (order

one in ηa/ηb) represent linear contributions to the update, meaning they result from changes in the
model output when either a is updated with b held constant, or vice versa. The last item δ3t (order
two in ηaηb) corresponds to a multiplicative update that captures the combined effects of changes
in both a and b. As we scale the width6, the desirable feature updates are such that ∆ft = Θ(1),
ensuring they remain unaffected by this scaling (the updates do not explode with width, see x for
more details). Ideally, we aim for both δ1t and δ2t to be Θ(1). If this condition isn’t met, it indicates
that either a or b is not being updated efficiently. For example, if δ1t = o(1), it suggests that as
n → ∞, the model behaves as if a is essentially fixed, with only b being trained. We say that the
feature learning in the attention mechanism is efficient when δit = Θ(1) for i ∈ {1, 2} and all
t > 1, it means that both a and b parameter updates significantly contribute to the change in ft(x).
We will see that when both δ1t and δ2t are Θ(1), the term δ3t is also Θ(1).

Let us assume that we train the model with gradient descent with learning rate ηa = Θ(nca), ηb =
Θ(ncb) for some ca, cb ∈ R. In the study by Yang et al. [49], it is noted that the training dynamics
primarily involve operations such as matrix-vector products and the summation of vectors or scalars.
Given the nature of these operations, it is easy to see that any quantity in the training dynamics should
be of order nγ for some γ ∈ R. We write v = Θ(nγ[v]), for any quantity v in the training dynamics.
When v is a vector, we use the same notation when all entries of v are Θ(nγ[v]) (See Appendix B.4
for the formal definition of γ).

With reference to the method of Hayou et al. [13], we start from the initialization in Starting with
a Toy setting, we have f0(x) = 0. Feature learning of attention mechanism is efficient when
δit = Θ(1) for i ∈ {1, 2} and all t > 1, and ft(x) = Θ(1) for t > 1. This can be interpreted as: ca + 1 + 2γ[bt−1] = 0

(
δ1t = Θ(1)

)
cb + 2γ[xa⊤t−1] = 0

(
δ2t = Θ(1)

)
γ[xa⊤t−1] + γ[bt−1] = 0 (ft−1(x) = Θ(1)) ,

which, after simple calculations, implies that ca + cb = −1. Notice that the above also leads to
the ca + cb + 1 + γ[xa⊤t−1] + γ[bt−1] = 0 (δ3t = Θ(1)). This is only a necessary condition. In
the following section, we will provide theoretical conclusions in the toy model setting that offer
guidance for real-world experiments.

5To simplify the analysis, we assume that the fine-tuning dataset consists of a single sample, though our
analysis can be easily generalized to multiple samples. All conclusions remain essentially valid when (a, b) are
matrices.

6This property is generally satisfied in practice when the model width is large (e.g., n ≈ 800 for Roberta-
base and n ≈ 4000 for Llama3.1-8b).
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Theorem 2 (Efficient fine-tuning in attention mechanism (Informal)). In the case of Starting with
a Toy setting, with ηa = Θ(n−1) and ηb = Θ(1), we have for all t > 1, i ∈ {1, 2, 3},δit =
Θ(1). In other words, the feature learning of attention mechanism is efficient when ηQK(ηa) =
Θ(n−1), ηV (ηb) = Θ(1). We denote ηV /ηQK as λ. We refer the reader to Appendix B.5 for more
details on the proof.

Remark 4. In practice, Theorem 2 implies that the learning rate for Wv should be generally much
larger than that of Wq&Wk in fine-tuning. We verify that this scaling is valid for general neural
network models in Section 4.1. Naturally, the optimal ratio λ depends on the architecture and the
fine-tuning task through the constants in ‘Θ’. This represents a limitation of the asymptotic results,
as they do not provide insights into how the task and neural architecture influence these constants.
We will further address this issue in our future work.

A summary of the main theoretical analyses. According to the traditional statistical learning view-
point, performance can be defined by the sum of optimization error and generalization error. Our
theoretical analyses in Sections 3 and 4 correspond to generalization and optimization, respectively.
In Section 3 (generalization, storage-friendly), we give Theorem 1 (Information-theoretic genral-
ization bounds), showing that with the same r value, fine-tuning Wq&Wv consistently achieves
results comparable to or even surpassing those of fine-tuning Wq,Wk,Wv . This reduces the num-
ber of parameters for the same r, while improving generalization bounds and potentially providing
memory benefits. In Section 4 (optimization, time-friendly), we discuss the learning dynamics in
fine-tuning attention mechanism, and we illustrate (Theorem 2) that the feature learning of attention
mechanism is efficient when the learning rate for Wv should be generally much larger than that of
Wq&Wk in fine-tuning. Building on our experimental and theoretical insights, one can develop
new algorithms to improve the effectiveness (e.g., storage, and time) of fine-tuning (Example in
Section 5).

5 AN EXAMPLE OF IMPROVING FINE-TUNING METHODS

Based on all our exciting insights, it becomes intuitive to design lightweight attention-based fine-
tuning improvements, particularly for downstream tasks. To illustrate how theoretical analysis ef-
fectively guides experimental procedures, we propose an example method where we freeze the Wk

and fine-tuning the Wq&Wv using different learning rates. This procedure is reported in Figure 5.

How to set the ratio λ? Naturally, as discussed in Remark 4, the optimal ratio λ depends on the
architecture and the fine-tuning task via the constants in Θ in Theorem 2. This is a limitation of
these asymptotic results since they do not offer any insights on how the constants are affected by the
task and the neural architecture. However, we can still employ some heuristic methods, such as: we
can select an appropriate range by conducting a certain amount of experiments, as shown in Figure
1, it seems that a ratio of order 21 − 24 is optimal. Moreover, λ should not be too large; otherwise,
as shown in the MNLI subplot in Figure 1, the model’s performance will collapse.

Experimental setup. We conduct experiments on widely adopted benchmark datasets [44] and
Roberta-base model [29]. We selected two mainstream baselines: Full Fine-tuning, LoRA [20] and
DoRA [28]. Additionally, we adapt only the attention weights for downstream tasks, keeping the
other modules frozen to maintain simplicity and validate the theoretical guidance through experi-
ments. In our experiments, we evaluated the performance for λ values of 2, 4, and 8 (one can also
determine a general optimal ratio through experiments, and even apply different settings across dif-
ferent layers of the model). We report the average results based on 3 random seeds, as shown in
Table 2. The hyperparameter settings for the experiments can be found in Appendix C.1.2 and the
base model performance for each task can be seen in Table 2 and Appendix C.2.2. We also have
added ablation experiments on different models (Mistral-7B [3]) in Appendix C.2.4.

Results. We leverage our theoretical results (Theorem 1 and Theorem 2) to enhance the effi-
ciency of existing fine-tuning methods, such as Full Fine-tune and LoRA, on downstream tasks. As
shown in Table 2, the improved fine-tuning approach not only outperforms the original version but
also significantly reduces the number of parameters. For instance, on the MRPC task, LoRA (QV)
r = 16, λ = 8 (1.77M) achieves better performance compared to Full Fine-tune (QKV) (21.85M)
and LoRA (QKV) r = 16 (2.07M). This series of experiments clearly demonstrates that our theo-
retical insights effectively enhance fine-tuning algorithms, particularly in terms of memory usage

9
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Table 2: Comparison of fine-tuning methods across GLUE benchmark. We report results on devel-
opment set, Pearson correlation for STS-B, Matthew’s correlation for CoLA, average accuracy for
MNLI (matched and mismatched), and accuracy for other tasks. The best results on each dataset are
shown in bold and the second best results are shown in underline. The QKV(QV) setting refers to
fine-tuning Wq,Wk,Wv(Wq,Wv). It is noted that the total number of parameters in the Roberta-
base model is 124.65M. λ means ηV = ληQ and r is the LoRA rank, and a larger λ does not
necessarily lead to better performance.

Method Trainable #Param (M) RTE STS-B MRPC CoLA MNLI SST-2 QQP QNLI
Before Fine-tune 0 45.12 -3.18 66.66 1.09 32.95 49.31 44.72 50.81
Full Fine-tune (QKV) 21.85 73.64 90.49 84.55 60.34 86.68 93.23 90.48 92.37
LoRA (QKV) r = 8 1.62 70.76 90.25 85.04 58.03 86.70 93.92 89.15 92.17
LoRA (QKV) r = 16 2.07 70.39 90.25 86.03 58.04 86.78 93.92 89.26 92.18
DoRA (QKV) r = 8 1.06 70.75 90.39 85.78 56.79 86.73 93.58 89.34 92.22
DoRA (QKV) r = 16 1.51 70.40 90.31 86.03 57.81 86.77 93.92 89.30 92.48

Full Fine-tune (QV) λ = 2 14.76 73.53 91.01 86.02 60.57 62.03 93.11 90.56 91.96
Full Fine-tune (QV) λ = 4 14.76 72.29 90.56 87.01 61.88 35.44 91.05 89.81 88.85
Full Fine-tune (QV) λ = 8 14.76 72.29 90.02 88.97 61.86 35.44 84.75 85.93 50.54

LoRA (QV) r = 8, λ = 2 1.48 71.84 90.37 86.02 58.54 86.85 94.03 89.47 92.33
LoRA (QV) r = 8, λ = 4 1.48 75.09 90.83 87.01 59.56 86.95 94.04 90.09 92.86
LoRA (QV) r = 8, λ = 8 1.48 76.13 90.75 88.97 61.88 86.93 93.46 90.01 92.34

LoRA (QV) r = 16, λ = 2 1.77 70.39 90.46 86.03 58.55 86.83 94.38 89.77 92.33
LoRA (QV) r = 16, λ = 4 1.77 76.17 91.05 87.99 60.06 87.19 94.03 90.30 92.73
LoRA (QV) r = 16, λ = 8 1.77 72.92 90.96 89.95 59.31 87.31 93.92 90.43 92.95

DoRA (QV) r = 8, λ = 2 0.90 71.12 90.29 87.01 58.54 87.08 93.96 89.60 92.60
DoRA (QV) r = 8, λ = 4 0.90 75.45 90.82 86.76 60.32 86.98 93.81 90.33 92.97
DoRA (QV) r = 8, λ = 8 0.90 70.76 90.38 87.75 57.01 87.12 94.15 90.45 92.48

DoRA (QV) r = 16, λ = 2 1.20 69.68 90.53 87.75 59.31 87.09 93.92 89.68 92.70
DoRA (QV) r = 16, λ = 4 1.20 76.16 90.77 88.48 60.84 86.96 94.15 90.34 93.01
DoRA (QV) r = 16, λ = 8 1.20 77.26 90.83 88.96 60.32 87.10 94.17 90.46 92.80

and optimization efficiency. Moreover, these theoretical results can guide the improvement of other
fine-tuning algorithms and even aid in the design of more efficient ones.

6 CONCLUSION AND LIMITATION

In this paper, we present our key findings in fine-tuning attention mechanism: Unequal Importance
of Attention Matrices—optimizing the Wv matrix significantly improves performance compared to
the Wk matrix. Fine-tuning only the Wq and Wv matrices is computationally efficient and can
yield results that match or surpass fine-tuning all three matrices Wq , Wk, and Wv . Attention Ma-
trices with Customized Learning Rate Leads to Better Convergence—using distinct learning rates
for these matrices is essential for optimal performance, with a higher learning rate for Wv speed-
ing up convergence. While theoretical analysis of these phenomena is limited, this paper provides
insights from two angles: Generalization—fine-tuning only Wq and Wv improves generalization
and memory efficiency, and Optimization—using different learning rates enhances the efficiency of
feature learning in the attention mechanism, leading to more effective fine-tuning. Our analysis pro-
vides a theoretical foundation for the configuration and improvement of lightweight algorithms in
LLMs fine-tuning. However, further studies are required on (i) how the task and neural architecture
influence the optimal ratio λ and (ii) whether the results about attention hold true for tasks beyond
natural language processing. These studies will further deepen our understanding of attention-based
fine-tuning in LLMs.
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A MORE RELATED WORKS

Attention mechanism analysis. A key component of transformers is the attention mechanism,
which dates back to [9]. Initially designed to capture long-range signals in sequential inputs by mix-
ing individual tokens, it has also been utilized to capture general structures in input data. After the
fully-attention-based language model has appeared [43, 5], the research community gets interested
in the functionality and benefits of the attention. For instance, transformers implicitly favor hierar-
chical interpretations of input sequences [21], the computational graphs tend to be tree-structured
[30, 32]. Theoretical analysis of training dynamics sheds light on how to identify key tokens [41],
select a few relevant tokens only (which is called localized attention) or select many tokens uni-
formly [4], and learn topic structure [25]. Besides, considerable works [36, 1, 51] try to understand
in-context learning capabilities from the perspective of gradient descent with attention.

Scaling for neural networks. Scaling refers to the process of enlarging a specific ingredient of a
model to enhance its overall performance [18]. The method is straightforward: extend the width or
depth of a neural network towards infinity, analyze how this limit is influenced by hyperparameters
like the learning rate and initialization variance during training, and then establish well-founded
choices for these hyperparameters to achieve a specific objective [17, 38, 11, 47, 49, 14, 10, 50, 13].
In the theory of scaling of neural networks, one usually tracks the asymptotic behaviour of key
quantities as we scale some model ingredient, it is a standard approach used to derive scaling rules
for initialization [38], activation function [11], network parametrization [50]. In this paper, we are
interested in scaling model capacity via the width n for the fact that most state-of-the-art pre-trained
models have large width. Examples of the infinite-width limit can be found in studies focused on
initialization methods [17, 47], or more comprehensive approaches to network parameterization.
For instance, Yang et al. [49] introduced µP, a parameterization technique for neural networks that
guarantees feature learning in the infinite-width limit, providing specific scaling rules for both ar-
chitecture and learning rates to optimize feature learning [48, 49].

Parameter-efficient fine-tuning. Fine-tuning all the parameters of a large language models, known
as full fine-tuning, is highly computationally expensive. To reduce the computational cost, various
parameter-efficient fine-tuning (PEFT) methods have been proposed [7], which only fine-tune a
small number of (extra) model parameters. PEFT methods can be divided into two categories from
the perspective of whether extra parameters are involved: (1) extra-parameter methods, freeze all of
the original parameters of an LLM and insert a set of learnable parameters to optimize the model
input or model layers suach as adapter tuning [19] , prompt tuning [23] and prefix tuning [24]; (2)
intra-parameter methods freeze most of the original parameters of an LLM and only tune a small
number of parameters of the LLM such as LoRA [20]. Furthermore, He et al. [16] present a unified
framework that establishes connections between PEFT methods and Zhu et al. [53] formally identify
and investigate asymmetry in the roles of low-rank adapter matrices in LoRA fine-tuning.

B OMITTED PROOFS AND ADDITIONAL RESULTS

B.1 THE CONNECTION BETWEEN PREFIX TUNING AND LORA.

Here, we provide an alternative view of Prefix tuning (without loss of generalization, we ignore the
softmax scaling factor for ease of notation):

Attn(xWq, concat(Pk,CWk), concat(Pv,CWv)

= softmax(xWqconcat(Pk,CWk)
T )

(
Pv

CWv

)
= (1− λ(x))softmax(xWqW

T
k C

T )CWv + λ(x)softmax(xWqP
T
k )Pv

= (1− λ(x))

standard attention︷ ︸︸ ︷
Attn(xWq,CWk,CWv)+λ(x)

independent of C︷ ︸︸ ︷
Attn(xWq,Pk,Pv),

where λ(x) =
∑

i exp(xWqP
T
k )i∑

i exp(xWqPT
k )i+

∑
j exp(xWqWT

k CT )j
is a scalar that represents the sum of normal-

ized attention weights on the prefixes. Notice that the first term in blue represents the original
attention mechanism without prefixes, while the second term in green introduces a position-wise ad-
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justment independent of C. It provides an alternative perspective on Prefix tuning, where a position-
wise modification is applied to the original attention output h via linear interpolation:

h← (1− λ(x)h+ λ(x)∆h, ∆h := softmax(xWqP
T
k )Pv ≜ softmax(xA)B.

B.2 PROOF OF THEOREM 1

The origin form of the mutual information based bound is predicated on a sample-specific MI, which
quantifies the shared information between the output variable W and the input sample set SN . The
following lemma shows the result:
Lemma 1. (Xu and Raginsky [46, Theorem 1.]). Assume the loss ℓ(W, Z) is R-subGaussian for
any W ∈ W , then

ẽrror(A) ≤
√

2R2

N
I(W;SN ),

where I(W;SN ) = DKL(QW,SN
∥QW ⊗ QSN

) is the mutual information and DKL denotes the
KL divergence.

Unroll the terminal parameters’ mutual information I(W;SN ) to the full trajectories’ mutual infor-
mation will get:
Lemma 2. Let Definition 1 hold, then I(W +∆W;SN |A) ≤ I(∆W;SN |A,W).

Proof.

I(W +∆W;SN |A)
≤ I(W,∆W;SN |A) (*)
= I(W;SN |A) + I(∆W;SN |A,W) (**)
= I(∆W;SN |A,W).

where Eq. (*) is by the data processing inequality (e.g., Z − (X,Y ) − (X + Y ) form a Markov
chain then I(X +Y,Z) ≤ I(X,Y ;Z)), Eq. (**) is by the chain rule of the mutual information, and
I(W;SN ) = 0 for W is independent of SN .

Then combine Lemma 1 and Lemma 2 , we can get: ẽrror(A) ≤
√

2R2

N I(∆W;SN |A,W).

We consider the case of tuning Wq&Wv only first. Applying the above results, note that here

I(∆W;SN |AQV ,W) = I({Wi
q,W

i
v}i∈I ;SN |AQV ,W),

where we have used the data processing inequality (DPI), noting that the Wi
k are here considered

fixed constant matrices as they are not trained.

We can now bound this expression as

I({Wi
q,W

i
v}i∈I ;SN |AQV ,W) ≤ H({Wi

q,W
i
v}i∈I) ≤ 2qr

∑
i∈I

(di + ki),

where Wi
q,W

i
k,W

i
v ∈ Rdin×dout , and we have noted that mutual information is upper bounded by

discrete entropy, and entropy in turn is upper bounded by the uniform distribution over its possible
support set (q bits in each of r

∑
i∈I(din + dout) dimensions). The bounds for the other algorithms

are similar.

B.3 INITIALIZATION DISCUSSION

Following standard initialization schemes (e.g., LeCun Init and He Init [22, 17]), one generally con-
sider a Gaussian initialization of the weights as follows: ai ∼ N (0, σ2

a), b ∼ N (0, σ2
b ) (The

Gaussian distribution can be substituted with any other distribution that has finite variance). Revis-
iting Starting with a Toy setting, a ∈ R1×n, b ∈ R. Thus, one should set σ2

a = Θ(n−1), σ2
b = 0

to ensure xaT does not explode with width (xaT = Θ(1)), for a non-zero initialization for a. This
is justified by the Central Limit Theorem (See [49] for more technical details). And if we choose a
non-zero initialization for b, one should make sure that σ2

b = Θ(1), σ2
a = 0. And we will consider

these two initialization schemes to show our theoretical understanding.
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B.4 GAMMA FUNCTION

Why introduce the Gamma function?
In Section 4.2, the learning rate ηa = Θ(nca), ηb = Θ(ncb) for some ca, cb ∈ R. And in
Appendix B.3 we assume that the init weights are also scale polynomially with n, it is evident that
preactivations, gradients, and weight updates all exhibit asymptotic polynomial growth in n.
Operations.
We write v = Θ(γ[v]) to capture it, and some elementary operations (Given two real-valued
variables v1, v2):

• Multiplication. γ[v1 × v2] = γ[v1] + γ[v2].

• Addition. Generally, we have γ[v1 + v2] = max(γ[v1], γ[v2]). The only instance where
this does not hold is when v1 = −v2. This is typically a zero-probability event if the two
variables are random variables that are not perfectly correlated, which is the case in most
scenarios where we apply this formula (Appendix B.5).

B.5 PROOF OF THEOREM 2

Theorem 2.[Efficient fine-tuning in attention mechanism (Informal)]
In the case of Starting with a Toy setting, with ηa = Θ(n−1) and ηb = Θ(1), we have for all
t > 1, i ∈ {1, 2, 3},δit = Θ(1). In other words, the feature learning of attention mechanism is
efficient when ηQK(ηa) = Θ(n−1), ηV (ηb) = Θ(1).

Proof. In Section 3, we say that the feature learning of attention mechanism is efficient when δit =
Θ(1) for all t, i ∈ {1, 2, 3}. Using the elementary formulas from Appendix B.4, we can get (for all
t):  γ[ηa] + 1 + 2γ[bt−1] = 0

(
δ1t = Θ(1)

)
γ[ηb] + 2γ[xa⊤t−1] = 0

(
δ2t = Θ(1)

)
γ[ηa] + γ[ηb] + 1 + γ[xa⊤t−1] + γ[bt−1] = 0

(
δ3t = Θ(1)

)
.

Simple calculations yield γ[ηa] + γ[ηb] = −1. Further consider the gradient update from t− 1 to t,
the recursive formulas are given by:{

γ[xa⊤t ] = max
(
γ[xa⊤t−1], γ[ηa] + 1 + γ[bt−1]

)
γ[bt] = max

(
γ[bt−1], γ[ηb] + γ[xa⊤t−1]

)
Starting from t = 1. In both initialization schemes discussed in Appendix B.3, we have to set
γ[ηb] = 0 and γ[ηa] = −1 to ensure that γ[ft] = γ[xaTt ] + γ[bt] = 0:
(1) σ2

a = Θ(n−1), σ2
b = 0. We have γ[xaT1 ] = γ[xaT0 ] = 0, γ[b1] = γ[ηb(xa

T
0 )y] = γ[ηb].

Therefore, for t = 2, γ[xaT2 ] = max(0, γ[ηa] + 1 + γ[ηb]) = max(0, 0) = 0, γ[b2] =
max(γ[ηb], γ[ηb] + 0) = γ[ηb], this holds for t ≥ 1 by induction.
(2) σ2

a = 0, σ2
b = Θ(1). We have γ[b1] = γ[b0] = 0, γ[xaT1 ] = γ[ηa||x||2U0b

2
0] = γ[ηa] + 1.

Therefore, for t = 2, γ[b2] = max(0, γ[ηb] + γ[ηa] + 1) = max(0, 0),γ[xaT2 ] = max(γ[ηa] +
1, γ[ηa] + 1 + 0) = γ[ηa] + 1,this holds for t ≥ 1 by induction.
To sum up, setting ηQK(ηa) = Θ(n−1), ηV (ηb) = Θ(1) ensures efficient fine-tuning in attention
mechanism.

C EXTENSION TO EXPERIMENTS

C.1 EMPIRICAL DETAILS

C.1.1 GLUE TASKS WITH ROBERTA

For our experiments with Roberta-base models, finetuned on GLUE tasks, we use the following
setup:

Tasks. MNLI, QQP, SST2, QNLI
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Training Algorithm. AdamW with β1 = 0.9, β2 = 0.99, ϵ = 1e− 8, linear schedule, no warmup.

Targert Modules for Fine-tuning. ‘query’, ‘key’ and ‘value’.

Learning rate.
(1) For Table 1, ηQK = ηV = 5e−5.
(2) For Figure 1,
ηQK = {2e−5, 5e−5, 1e−4, 2e−4, 4e−4, 8e−4},
ηV = {1e−4, 2e−4, 4e−4, 8e−4, 1e−3, 2e−3}
GPUs. Nvidia A800.

Other Hyperparameters. Sequence length T = 128, train batch size batchsize = 32, number of
train , number of random seeds s = 3.
(1) For Table 1, epochs E = 6 (E = 10 for SST2).
(2) For Figure 1, epochs E = 3 (E = 6 for SST2).

C.1.2 TRAINING HYPERPARAMETERS

Training hyperparameters.

Corpus length learning rate batch size epochs
RTE 128 1e-04 32 20
MRPC 128 1e-04 32 20
STS-B 128 1e-04 32 20
CoLA 128 1e-04 32 20
SST-2 128 1e-04 32 10
QNLI 128 1e-04 32 10
QQP 128 1e-04 32 10
MNLI 128 1e-04 32 10

Table 3: Training hyperparameters for different datasets. More details can be seen in our code.

• For Full Fine-tune (QKV) and LoRA (QKV), we use ηQ = ηK = ηV = 1e-04.
• For the improved methods, we use ηQ = 1e-04, ηV = λ× 1e-04.

The hyperparameter settings here differ from those in Table 1 and Figure 1, so the results may show
slight variations.

C.1.3 MNLI TASK WITH LLAMA3.1-8B

For our experiments with Llama3.1-8b models, finetuned on MNLI, we use the following setup:

Training Algorithm. AdamW with β1 = 0.9, β2 = 0.999, ϵ = 1e− 6, constant schedule.

Targert Modules for Fine-tuning. ‘q proj, k proj, v proj’.

Learning rate grid.
For Table 1, ηQK = ηV = 1e−5.
Else:
ηQK = {1e−6, 5e−6, 1e−5, 5e−5, 1e−4},
ηV = {1e−6, 5e−6, 1e−5, 5e−5, 1e−4, 2e−4, 4e−4}
Hyperparameters. LoRA rank r = 16, α = 16, and dropout 0.1. Precision FP16. Sequence length
T = 128, train batch size batchsize = 128.

GPUs. Nvidia A800.

Before fine-tuning model performance. QQP: 55.08 , MNLI: 33.34
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C.2 EMPIRICAL RESULTS

C.2.1 GLUE TASKS TRAIN LOSS
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Figure 3: The train loss of RoBERTa-base fine-tuning. Other settings are same to Figure 1.

C.2.2 MNLI LLAMA3.1-8B
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Figure 4: The train loss of Llama3.1-8b fine-tuning. Other settings are same to Figure 2.

C.2.3 ALGORITHM FRAMEWORK

LoRA
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freezeLoRA LoRA𝑾𝑣𝑾𝑞 𝑾𝑘
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Figure 5: A brief diagram outlining how our theoretical insights guide the experiments.
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C.2.4 ABLATION EXPERIMENTS ON MISTRAL-7B

In alignment with the experimental setup (hyperparameter setting for Llama3.1-8b) described in our
Section 4.1, Figure 2, we have evaluated the RTE and MNLI task performances of our approach on
Mistral-7B:

Method Hyperparameter RTE MNLI
LoRA (QKV) r = 16, λ = 1 81.28 87.80
LoRA (QV) r = 16, λ = 1 80.51 88.87
LoRA (QV) r = 16, λ = 2 81.59 89.04
LoRA (QV) r = 16, λ = 4 80.87 88.64
LoRA (QV) r = 16, λ = 8 83.75 88.78

C.2.5 MORE CHALLENGING EVALUATION

Evaluating the model on more challenging benchmarks is essential for a comprehensive understand-
ing of its capabilities. To address this, we follow [52] to fine-tune the LLaMA3.1-8B model on
the MetaMathQA [52] dataset (the training set consists of the first 10K samples selected from the
150K MetaMathQA dataset.) and evaluate the performance on the GSM8K [6] (a benchmark for
mathematical problem-solving).

Method GSM8K (100%)
Before fine-tune 25.55
LoRA (QKV) r = 16, λ = 1 57.70
LoRA (QV) r = 16, λ = 2 59.15
LoRA (QV) r = 16, λ = 4 58.23

C.2.6 FINE-TUNING K,V

We fine-tune only Wk and Wv of Roberta-base, others are the same to Table 1.

Weight Type Wk,Wv Wq,Wv Wq,Wk,Wv

SST2(R) r = 8 0.920 0.919 0.922
r = 16 0.920 0.921 0.923

QNLI(R) r = 8 0.887 0.889 0.895
r = 16 0.888 0.890 0.890

QQP(R) r = 8 0.840 0.840 0.844
r = 16 0.840 0.839 0.844

MNLI(R) r = 8 0.821 0.820 0.827
r = 16 0.822 0.824 0.828
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C.2.7 DIRECTLY FINE-TUNING Q,K,V WITH LAMBDA

We fine-tuning Wq,Wk,Wv with λ directly with the same settings in Table 2 for easy comparison,
supporting one of our major claims in Theorem 2.

Method Trainable #Param (M) RTE STS-B MRPC CoLA
Before Fine-tune 0 45.12 -3.18 66.66 1.09
LoRA (QKV) r = 8, λ = 1 1.62 70.76 90.25 85.04 58.03
LoRA (QKV) r = 8, λ = 2 1.62 72.92 90.54 86.76 58.28
LoRA (QKV) r = 8, λ = 4 1.62 73.64 90.84 87.74 60.66
LoRA (QKV) r = 8, λ = 8 1.62 76.10 91.00 88.48 60.59

LoRA (QKV) r = 16, λ = 1 2.07 70.39 90.25 86.03 58.04
LoRA (QKV) r = 16, λ = 2 2.07 72.56 90.36 86.27 59.81
LoRA (QKV) r = 16, λ = 4 2.07 74.00 90.84 86.76 60.07
LoRA (QKV) r = 16, λ = 8 2.07 76.97 90.81 87.74 60.34
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